President HU Jintao, inspecting the Lanzhou Central Meteorological Office.

The meteorological services and meteorologists across China are committed to developing the country, serving the society and benefiting the people. With your diligent work, pioneering spirit and unremitting exploratory efforts, you have made outstanding contributions to promoting economic and social development, safeguarding people’s lives, health and well-being, and maintaining national security. Meteorology is of vital importance to the national economy and people’s livelihood. As global climate change is intensifying and the economy and society are developing rapidly in China, meteorological services will play an increasingly prominent role and undertake growing tasks. I hope that you will step up your efforts to research and gain a better understanding of climatic behavior, vigorously promote meteorological science and technology innovation, and continuously improve capabilities in making meteorological predictions and forecasts. By preventing and mitigating meteorological disasters, coping with climate change, and exploiting climate resources, you provide strong support to building a moderately prosperous society in all respects and accelerate the socialist modernization drive, as well as make positive contributions to improving the global environment and promoting the sustainable development of human society.

HU Jintao
President of China
It is important to follow the direction of the development of public meteorological service, give top priority to the improvement of meteorological services, promote scientific and technological innovations, enhance the development of first-class equipment, first-class technologies, first-class human resources and first-class weather stations. Thus we build up a powerful, world-leading and modernized meteorological system for providing the first-class meteorological services for socio-economic development, people’s lives and national security.

Premier WEN Jiabao

The meteorological work has never been so attended by the government at various levels as it is today; it has never drawn so much attention from social communities as today; it has never been so popular among the general public as today; and it has never been so closely attended by the international community as today.

HUI Liangyu

Vice Premier Hui Liangyu met with the selected CMA staff, whose performances in major meteorological service delivery were well recognized.
China is one of the countries in the world which are often seriously hit by meteorological disasters. Each year, up to 400 million people are affected by various meteorological hazards such as typhoons, heavy rainfall/snowfall, droughts, dust storms, lightning, hailstorms, frost, high winds, heavy fog, high temperatures, low temperatures and cold injury, tornadoes, as well as secondary disasters induced by heavy rain, including floods, flash floods, landslides, mud flow, etc.. The total economic loss is equivalent to 1%-3% of GDP. Therefore, it is of highly practical significance to provide accurate and timely weather forecasts and warnings, and to improve the capability of the whole society in preventing disastrous events for ensuring the maximum protection of people’s lives, property, economic development and social progress.

Situated in East Asia, facing the West coast of the Pacific Ocean, China has a land area of about 9,600,000 km² and a sea area of more than 4,700,000 km². China spans across five climate zones, featuring a monsoon climate, and abundant climate resources. Exploration of wind and solar energies, agro- and eco- climate resources, and atmospheric water resources has a huge potential, which would have enormous economic, environmental and ecological value when these resources are transferred into practical productivity.

Climate change has led to a shortage of water resources, extensive droughts, sea level rise, glacier retreat, desertification, food output fluctuation and epidemic disease, which have posed serious threats to food, energy, water resources, ecological environment and public health. This affects the survival and development of mankind, and deeply hinders our security. It is a common issue faced by human societies, a currently high profile international issue, and a realistic threat to China's sustainable economic and social development.

The meteorological service falls into a category of fundamental public good, which is based on relevant sciences and technologies and oriented to the whole society. The Chinese Government has always attached great importance to the meteorological service. Under a series of major policies and measures such as “The Meteorology Law of the People’s Republic of China” (promulgated on 1 January 2000), “Some Comments Made by the State Council on Accelerating the Development of the Chinese Meteorological Service” (GF [2006] No. 3), “China’s National Climate Change Programme” (issued and implemented in
June 2007), “Some Comments Made by the General Office of the State Council on Further Strengthening Meteorological Disaster Prevention” (GBF [2007] No. 49), and “Regulations on Prevention of and Preparedness for Meteorological Disasters” the Chinese meteorological service has made substantial achievements. At present, the China Meteorological Administration (CMA) has established an integrated meteorological observing system incorporating space-based, airborne and ground-based observations, which has steadily improved the accuracy of weather forecasts and climate predictions. Its operational system has witnessed allround development covering climate change prediction & projection, weather modification, thunderstorm & lightning detection, forecasting and warning, eco- and agro-meteorological forecasts & services, atmospheric composition monitoring and service delivery, and space weather monitoring & warning, etc. All these have quickened the pace of the meteorological modernization, with significant economic, social and ecological benefits being achieved.

Looking forward, the Chinese meteorological work will take scientific development as its theme, and regard change of the development modality as its pathway, adhering to public meteorology as the direction of its development and always giving the highest priority to the further improvement of its meteorological services. We shall continuously pursue in-depth reform and opening-up, and strongly promote scientific and technological innovations in meteorology. According to requirements for accumulating “first-class equipment, technology, human resources and stations”, we shall constantly improve our capabilities in making meteorological predictions and forecasts, in prevention and mitigation of meteorological disasters, in response to climate change, and in exploiting climate resources, in order to build up a world-class advanced meteorological modernization system, and to make a new and even greater contribution to economic development, social progress, all-round construction of a better-off society by providing first-class meteorological services for people’s livelihood and national security, and to the advance of the great socialist cause with Chinese characteristics!

Dr. ZHENG Guoguang
Administrator
China Meteorological Administration
CONTENTS

01 Overview

10 Meteorological Disaster Prevention & Mitigation

12 Response to Climate Change

16 Modernized Meteorological Operation

34 Scientific & Technological Innovation

37 Human Resources

39 Legal System Construction

41 International Cooperation

44 Meteorological Culture
Mandates

- Formulating policies, legal and regulatory frameworks, development strategies and long-term plans governing meteorological services; formulating and issuing rules and regulations, technical standards and practices governing meteorological services, and supervising their execution; undertaking relevant administrative reviews.

- Participating in the central government decision-making process in meteorological disaster prevention, preparedness and mitigation; organizing a joint trans-regional and inter-departmental prevention campaign to combat major severe weather events; organizing and guiding the efforts to prevent and mitigate disasters induced by thunderstorm & lightning, heavy fog and other meteorological disasters; and being responsible for managing the local weather modification operations.

- Organizing to formulate and implement the plans for meteorological disaster prevention and preparedness; organizing the management work in emergency response to meteorological disaster prevention and preparedness; being responsible for providing meteorological support for public events; undertaking the operation and management of the early warning issuance platform for the nationwide public events.

- Formulating and implementing plans for meteorological disaster prevention and preparedness; organizing the management work for emergency responses to meteorological disaster prevention and preparedness; being responsible for providing meteorological support for public events; undertaking the operation and management of the early warning issuance platform for nationwide public events.

- Exercising management on the national weather forecasts and warnings, short-term climate predictions, urban environment-oriented meteorological forecasts, fire risk weather forecasts, space weather monitoring and warning and the issuance of climate impact assessments; organizing and guiding the exploitation and conservation of climatic resources; organizing and reviewing the meteorological certifications of state key construction projects, major regional economic development projects, and urban & rural construction planning.

- Organizing major meteorological research projects, and promoting wider applications of the proven research findings to meteorological operations; guiding and coordinating meteorological education and training; organizing the public outreach of meteorological knowledge to increase public awareness of meteorological disaster prevention & mitigation and climate resources.

- Managing international cooperative activities in meteorology; participating in activities of the World Meteorological Organization and other international meteorological institutions on behalf of the Chinese government; and conducting cooperation and exchanges with the meteorological institutions of other countries or regions.

- Providing leadership for the meteorological establishments nationwide; managing as the main governing body the meteorological bureaus at the provincial level in terms of planning and finance, institutional structures, personnel and human resources, scientific research, training and operational development; and guiding the development of local meteorological services.

- Assisting local people’s governments in guiding ideological and cultural activities of local meteorological staff.

- Undertaking any other tasks assigned by the State Council.
CMA Leading Team

Dr. ZHENG Guoguang
Administrator of the China Meteorological Administration
Development Strategies

Concept of development: Public-, security-, and resource-oriented meteorology
Objective: Establishing a comprehensive modernized meteorological service system by 2020

Development and deployment of meteorological services with Chinese characteristics over the next 5 years:
Centering on enhancing the meteorological service capability for the overall construction of a well-off society, focusing on building a modern meteorological service system, based on national meteorological science & technology innovation system and meteorological human resource system, and ultimately, laying a firm foundation for establishing a comprehensive modernized meteorological service system by 2020.

Six requirements:
To further enhance the meteorological service capability for the overall construction of a well-off society;
To further emphasize meteorological disaster preparedness and mitigation;
To further strengthen responses to climate change;
To further coordinate the overall development of the meteorological service;
To further deepen reform and opening up;
To further promote the CPC buildup and meteorological culture.

Some Comments Made by the State Council on Accelerating the Development of the Chinese Meteorological Service
Under the leadership of the State Council, the China Meteorological Administration (CMA) organized the Research on the Chinese Meteorological Development Strategy. On 12 January 2006, “Some Comments Made by the State Council on Accelerating the Development of the Chinese Meteorological Service” ([2006] No.3) was issued, requesting that all regions and departments must attach greater importance to meteorological services, incorporate meteorological services into national economic and social development plans and scientific & technological development plans. Also to further refine the objectives and requirements for accelerating the development of the meteorological services and expedite the development and implementation of specific measures with coordinated arrangements and strengthened collaboration, so as to promote the overall, coordinated and sustainable development of the meteorological services.

★ The meteorological services fall into a category of fundamental public good, which is based on relevant sciences and technologies and oriented to the whole society;
★ Accelerating the development of meteorological services is in urgent need for addressing emergency events and securing people’s lives and their property;
★ Accelerating the development of meteorological services is in urgent need for responding to global climate change and ensuring national security;
★ Accelerating the development of meteorological services is in urgent need for responding to strains on natural resources and ensuring sustainable development.
Guideline for Accelerating the Development of Meteorological Service

The scientific development concept shall be implemented in all aspects. Meteorological services shall always be targeted to the public. To be first-class in equipment, technology staff and stations, it is necessary to further strengthen the groundwork for observation, to improve weather forecasts and climate prediction skills, and to speed up scientific and technological innovations. Efforts shall be made to set up a modern meteorological system that is advanced in a global context in order to enhance the role of meteorology in support of economic and social development, national security and sustainability, and to deliver first-class meteorological services for the emerging harmonious and well-off society.

Goals of the Meteorological Development

By 2020, an advanced, well-structured and functioned modern meteorological system is expected to be set up so that the meteorological performance will approach a world-leading level, reaching such a level in some areas.

Comments made by the General Office of the State Council on Further Strengthening Meteorological Disaster Prevention

On 5 July 2007, the General Office of the State Council issued the “Comments on Further Strengthening Meteorological Disaster Prevention” (GBF [2007] No. 49), requesting that great importance be attached to the meteorological disaster prevention and preparedness in all localities and by all departments, and that disaster prevention, mitigation and response skills be improved across the whole society to minimize losses arising from meteorological disasters and to ensure the safety of people's lives and property.

General Requirements for Strengthening Meteorological Disaster Prevention

The people-first, prevention-oriented, and prevention/control-combined approach shall be pursued. Science and technology, rules and regulations, and the general public shall be relied upon. Overall planning and specific guidance shall be prepared and provided. A meteorological disaster prevention and preparedness plan shall be developed and implemented. A prevention and mitigation system shall be set up at a faster pace at national and local levels. The groundwork for disaster prevention and mitigation shall be strengthened. Monitoring and warning, combined prevention efforts, emergency responses and rescue and relief of all meteorological disasters shall be enhanced effectively. All these are aimed at improving disaster management of the whole society, and promoting coordinated and sustainable socio-economic development.
A Dual Leadership System
The China Meteorological Administration (CMA) is a public institution that is directly affiliated to the State Council. Its predecessor was the Central Military Commission Meteorological Bureau established in December 1949. Under a unified and hierarchical management, the meteorological establishments nationwide are led both by the CMA and the local people’s governments, with the former as the core leadership. In China, meteorological operational services are operated at five levels: i.e. national, regional, provincial, prefectural and county levels.

Sectoral Governance
Authorized by the State Council, the China Meteorological Administration discharges the administrative functions in supervising the overall meteorological work nationwide, while meteorological authorities at various levels are responsible for the local meteorological work in their respective administrative regions.
By the end of 2010, within the CMA framework (excluding Hong Kong, Macao, Taiwan and Hainan Meteorological services), the following establishments have been set up: 30 provincial (autonomous regional and municipal) meteorological services, 14 Met bureaus of sub-provincial cities (including 4 cities that are specifically designated in the state development plan), 319 prefectural (or city-level) Met services and 2440 county Met services (stations).
Operational Centres at National Level

National Meteorological Centre
The National Meteorological Center (Central Meteorological Office) is a science & technology based institution that delivers a basic public service. It serves as an operational centre at the national level for issuing nationwide weather forecasts, products and services as well as a WMO Regional Meteorological Centre and an Emergency Response Centre for Dispersion of Nuclear Pollutants in Asia. It is also a WMO Regional Meteorological Centre in the framework of World Weather Watch.

National Satellite Meteorological Centre (National Space Weather Monitoring and Early Warning Centre)
The National Satellite Meteorological Centre (National Space Weather Watch Centre) is an operational scientific & technological unit for public good at the national level, and is responsible for making development plans for China’s FY series meteorological satellites and satellite-based meteorological services, engineering construction of FY satellite application systems, ground operations, management of meteorological satellite operations, as well as scientific & technological research related to meteorological satellites. On the one hand, it is committed to applying satellite data and products to meteorological forecasts and predictions, as well as to disaster prevention and reduction. On the other hand, it also provides space weather monitoring and early warnings on operational basis at the national level.

National Climate Centre (CMA Climate Change Center)
The National Climate Centre (NCC) is a science & technology based institution at the national level. The NCC is an important component of the basic operational system in meteorology under the CMA, and it also serves as the CMA Solar/Wind Energy Resources Assessment Centre and CMA Centre on Climate Change. It functions as a WMO East Asian Monsoon Activity Centre, Global Long-Range Forecast Product Centre and a WMO Regional Climate Center (RCC).
National Meteorological Information Centre

The National Meteorological Information Centre (NMIC) serves as a national meteorological telecommunication centre in China and a WMO Regional (Asia) Telecommunication Hub. The Beijing High-Performance Computer Application Centre is the secondary name for the NMIC.

CMA Meteorological Observation Centre

The CMA Meteorological Observation Centre is a basic meteorological facility at the national level that combines atmospheric observation operations with scientific research. It plays a leading role in maintaining both operation and development of the national integrated meteorological observing system in support of the weather forecasts and services. It also plays a steering role in making innovations, research & development of atmospheric observation science and technologies.

The CMA Meteorological Observation Centre hosts the CMA Integrated Atmospheric Observation Experiment Base and the National Meteorological Metrology Station. It also functions as a WMO Regional (Asia) Instrument Centre (RIC-Beijing).

CMA Public Meteorological Service Centre

The Public Meteorological Service Centre, a public service unit, is an important component of the Chinese meteorological operational system. It delivers media-oriented meteorological services at national level, including warnings and advisories in great events. In addition, it provides technical guidance for the public meteorological services across the country.
METEOROLOGICAL DISASTER PREVENTION & MITIGATION

Working Mechanism for Meteorological Disaster Prevention and Preparedness

On 27 January 2010, the State Council promulgated the Regulations on Prevention of and Preparedness for Meteorological Disasters (Decree No. 570), and the Regulation became effective as of 1 April 2010. The legal document further regulates the relationship among governments at various levels, relevant departments and general public in activities to prevent and prepare for meteorological disasters in terms of rights and obligations, and it also creates a legal mechanism featuring unified government leadership, collaborations with multiple departments, and broad social participation, which puts in place a more sound system for meteorological disaster prevention and preparedness involving “government leading, joint efforts by governmental agencies, and participation of social entities”.

On 18 September 2007, a national conference on meteorological disaster prevention and mitigation was held in Beijing, which was themed “prevention and preparedness to reduce meteorological disasters”.

So far, 24 provinces (including autonomous regions or municipalities) have prepared 43 plans for meteorological disaster prevention and preparedness at the county level; 157 counties have conducted certifications for emergency responses to meteorological disasters in townships; 58 villages in 10 provinces have launched demonstrative projects for thunder and lightning protection in rural areas; governments of 31 provinces have deployed their agro-meteorological service systems and meteorological disaster prevention systems in rural areas; 9 provinces have carried out mapping on agro-meteorological disaster risks and refined agro-climatic zonations; and 8 provinces have designated volunteers for meteorological information delivery in villages.
Enhancing the inter-department synergy in meteorological disaster prevention and mitigation, to advance technical collaborations with multiple departments, and to refine specific cooperative items

Through active implementation of the Regulations on Prevention of and Preparedness for Meteorological Disasters, the National Plan for Prevention of and Preparedness for Meteorological Disasters, and the National Plans for Emergency Response to Meteorological Disasters, an inter-department liaison conference on early warning and service delivery in case of meteorological disasters involving 25 governmental departments has been put into practice.

Increasing societal awareness and capabilities against meteorological disasters

Enhancing public outreach of scientific knowledge for meteorological disaster prevention and mitigation in villages, schools, local communities, enterprises and public transport systems.
RESPONSE TO CLIMATE CHANGE

The CMA takes the lead for organizing activities in China related to the Intergovernmental Panel on Climate Change (IPCC) and research on climate change. Under the auspices of the National Development and Reform Commission and the Ministry of Foreign Affairs, the CMA has participated in the formulation of China’s overall climate change response strategy, planning and policy, and has also been involved in international climate change negotiations, as well as launching climate change outreach and education campaigns.

The 3rd World Climate Conference (WCC-3) was held in Geneva, Switzerland from 31 August to 4 September 2009. On 3 September, Vice Premier HUI Liangyu made an important speech at the Conference. He elaborated on the importance of work related to climate and climate change, extensively demonstrating that the Chinese Government attached great importance to the work on climate and climate change. Its accomplishments in disaster prevention, climate, and climate change in China fully show its determination and principles to continuously carry on the work on climate and climate change, and clearly identify the direction of development in this field.

Improving organizational structure to strengthen the overall deployment of meteorological services in response to climate change

The inauguration ceremony of CMA Climate Change Center was held on 15 May 2008.

A press conference on the CMA implementation of the Action Plan for China’s National Climate Change Programme was held on 14 August 2007.
Participation in the work of China’s National Leading Group to Address Climate Change for strengthening communication and cooperation between governmental departments

In 2008, the China Meteorological Administration, the Ministry of Science and Technology and the Chinese Academy of Sciences jointly launched the preparation for the second national assessment report on climate change. By the end of 2010, the preparation for the report had been completed.

In June 2009, the China Meteorological Administration and the Chinese Academy of Social Sciences established a joint laboratory for climate change economics simulation. The laboratory issued Green Papers on Climate Change in 2009 and 2010 respectively - Annual Report on Actions to Address Climate Change (2009): Road to Copenhagen and Annual Report on Actions to Climate Change (2010): Cancun’s Challenges and China’s Actions.

Actively conducting research on climate change to provide scientific support for domestic and foreign affairs in response to climate change

In June 2009, the China Meteorological Administration and the Chinese Academy of Social Sciences established a joint laboratory for climate change economics simulation. The laboratory issued Green Papers on Climate Change in 2009 and 2010 respectively - Annual Report on Actions to Address Climate Change (2009): Road to Copenhagen and Annual Report on Actions to Climate Change (2010): Cancun’s Challenges and China’s Actions.
Actively conducting education, training and outreach of climate change science

Since 2004, the CMA has successively held the International School on Climate System and Climate Change for 7 consecutive years, with a total of 900 students both at home and abroad being trained. Training courses are held for directors of meteorological services at provincial and county levels, to promote knowledge on climate change.

A series of popular science readings on climate change have been produced to increase public knowledge about climate change. Since 2007, multi-language TV footage and popular science reading entitled *Addressing Climate Change — China in Action* have been publicized.
China has established its operational climate operations system, including climatic monitoring and diagnosis, short-term climate predictions, climate impact assessment, climate applications and service delivery, and exploitation and utilization of climate resources. Now China is able to monitor the atmosphere, ocean and parts of the cryosphere in real time. The CMA has established its climate prediction system combining statistical methods with dynamic climate models, making qualitative and quantitative assessment of climate impacts on agriculture, water resources, transportation, energy, ecological environment and human health. By the end of 2005, China’s First-generation Dynamic Climate Model Operational Prediction System, developed by the National Climate Center (NCC), enabled China to stand among the few countries in the world that produce climate prediction products using climate models, and to play an important role in the exchanges of climate predictions and information in East Asia and in the World.

Main products:
Monthly Climate Trend Prediction; Drought and Flood Trend Prediction; Annual Climate Trend Prediction; Monthly Climate Monitoring Bulletin; Monthly Climate Impact Assessment; China’s Climate Bulletin on Drought and Flood; Seasonal Climate Monitoring Bulletin; Seasonal Climate Impact Assessment; Agrometeorology-based Annual Crop Yield Forecasts.
MODERNIZED METEOROLOGICAL OPERATION

Public Meteorological Service

Service concept: providing people-oriented services, whatever, whenever and wherever they are needed.

Meteorological services are the foundation of meteorology, and the starting point and destination of meteorological work. Through longterm efforts, the meteorological service delivery system with Chinese characteristics has been set up for decision-makers, the general public, and for specific users.

Decision Making-oriented Meteorological Service

Decision making-oriented service in China is unique globally. It provides governments at all levels with the services they require for meteorological and related disaster prevention and mitigation, response to climate change, major construction projects, regional development, and climate resource exploitation. In terms of its wide coverage, variety and sources, China’s decision-making service is at the global forefront.

Public Meteorological Service

The coverage and content of public meteorological services continues to increase. Apart from television, radio, newspapers and telephones, the public service is also delivered via websites, mobile phones and electronic screens, with distinctive Chinese characteristics. TV weather forecast programmes cover 10 CCTV channels and other 5 overseas and local channels. China’s Weather TV is available in 225 cities at the prefecture level in 30 provinces (and autonomous regions and municipalities) nationwide, with a total of users exceeding 44 million. China’s Weather Website’s page hits reached 15.81 million, ranking the first in domestic life-service websites and the second in international weather service websites. China has 120 million weather SMS mobile phone users.
Meteorological Support for Major Social Events and Activities

Weather services play an increasingly important role in major social events and activities.

Weather Service for the World Expo 2010

Weather Service for the Asian Games

Weather Service for the 60th Anniversary of New China

Weather Service for the Olympic Games

An emergency weather response platform at the forefront to combat snow disaster

An automatic weather station was set up in the earthquake-stricken area.
Weather Forecasting and Climate Prediction

Weather Forecasting

- Weather operations cover all techniques and routine operations in weather monitoring and assessment, numerical weather prediction, weather forecast and specialized weather forecast. Weather operations include 0-10 day weather and weather-induced disaster warning and forecasts, 11-30 day extended weather forecasts and specialized weather forecasts, as well as corresponding observations, information processing and services. Weather operations are delivered at national, regional, provincial, prefectural and county levels.
- National centres are responsible for development and operation of national forecast and prediction platforms and numerical models, and for providing operational guidance products, including NWP, weather and meteorological disaster monitoring and early warning, very short-range, short-, medium- and extended-range weather forecasts and other operational products.
- Regional meteorological centers are responsible for the development and applications of meso-scale numerical models, related specialized numerical models and related regional numerical predictions, and they provide the technical guidance and opportunities to exchange forecast and prediction techniques within the region.
- Based on the national guidance products, a provincial service provides weather and meteorological disaster monitoring, forecasts, early warnings and services, and it delivers weather forecast guidance products to lower-level services within the province (or autonomous region/municipality).
- Based on the provincial guidance products, a prefectural service provides weather and meteorological disaster monitoring, forecasts, early warnings and services, including weather forecast and guidance to county level stations operations within the prefecture.
- Based on the prefectural guidance products, a county station focuses on severe weather and meteorological disaster monitoring, produces weather forecast products by correctly using higher-level products, and delivers meteorological services within the county.

Agricultural Meteorology

Agro-meteorology is one of the important means to provide weather services for agriculture, the countryside and farmers. It has made significant contributions to providing specialized supportive services for development of modern agriculture, rural economy and community development, farming activities and farmers’ daily lives, and to ensuring China’s food security. Modernized agro-meteorological operations mainly include agro-meteorological observations and experiments, agricultural weather forecasts, crop yield forecasts and specialized agricultural yield and quality forecasts, soil moisture and irrigation forecasts, phenological forecasts, weather condition forecasts against crop and forest diseases and pests, agro-meteorological information delivery, agro-meteorological disaster monitoring, early warning and assessment, risk assessment on major agro-meteorological disasters, agricultural climate resource utilization and agricultural adaptation to climate change, and eco-meteorological monitoring and assessments.
Public-, security-, and resource-oriented meteorology

Winter wheat development and harvesting progress on 1 June 2010

Agricultural drought monitoring on 2 July 2010

Severity forecasts of onset and development of corn borer in Northeast China in 2010

An autumn harvest season weather forecast for farmers from 29 September to 1 October 2010
Atmospheric Composition

The atmospheric composition-related operations are mainly to collect, transmit, archive and apply atmospheric composition data, providing assessment and analysis services; to develop and apply atmospheric composition reanalysis data, producing and delivering atmospheric composition forecasts and service products as guidance.

An atmospheric composition observation station

The GHG monitoring and analysis system, which is complemented by relevant research projects, has expanded from a single-station observation at Waliguan into a 5-station observing network (Waliguan in Qinghai, Shangdianzi in Beijing, Lin’an in Zhejiang, Longfengshan in Heilongjiang and Shangri-La in Yunnan), which provide in-situ measurements of changing GHG concentrations in typical climatic zones, indirectly reflecting the effectiveness and process of emission reductions; it assesses regional differences and impacts of mutual transport by using meteorological data. It also estimates changing GWP in typical zones in relation to GHG variations.

Annual average concentrations of atmospheric carbon dioxide (CO₂) (ppm, i.e. mole fraction 10⁻⁶)

Global/Northern Hemisphere (NH)/Southern Hemisphere (SH)/MLO station (MLO), Hawaii, USA /Waliguan Station (WLG), Qinghai, China
Weather Modification

The CMA has set up a weather modification centre, shaping an organizational management structure involving government authorities and meteorological operators at various levels. Weather modification is operable nationwide. The operations mainly include rainfall/snowfall enhancement, hail suppression and fog dissipation. The operating means include aircraft, artillery and rockets. Weather modification is in order to exploit cloud precipitable water for drought alleviation, hail damage reduction, improvement of airport and road visibility, bushfire control and clear weather in support of major outdoor social events. 42,000 staff are currently employed nationwide in this field, with 6900 artillery units, 6900 rocket launchers, and 40 aircrafts leased each year. Weather modifications are operated in 2558 counties and large farms, to enhance rainfall over a target area of 5000,000 km² and suppress hail over 520,000 km².

A ground-based silver iodide generator

A rainfall enhancement aircraft

Rainfall enhancement and hail suppression by rockets

Hail suppression by artillery
Space Weather

Space weather refers to the condition of the sun, solar wind, magnetosphere, ionosphere, and thermosphere in the space between the sun and the earth. Severe space weather has a serious impact on aviation, spaceflight, communication, electricity, human health, etc., endangering national economic development and public safety.

In June 2002, with the approval of the government, the CMA set up the National Space Weather Monitoring and Early Warning Centre. The Center is mainly tasked to layout the China’s space weather monitoring network, to monitor the space weather in real time, to analyze and process the observational data, and to issue monitoring outcomes, forecasts & warnings about severe space weather events.
Thunderstorm & Lightning

Operational activities related to thunderstorms & lightning are to set up an integrated platform for thunderstorm & lightning monitoring, warning and forecast, research, service delivery and management, eventually shaping a lightning operation and service system that is based on monitoring, supported with research, and focuses on development of warning/forecasting and protective techniques as well as service delivery. Thunderstorm & lightning is regarded by the United Nations as one of 10 worst natural disasters. Management offices for lightning protection activities have been set up in meteorological services and governmental authorities at local levels to exercise their functions in this field, while institutional arrangements for research and operation have also been made, with the Thunderstorm & Lightning Physics and Protection Engineering Laboratory and the Beijing Thunderstorm & Lightning Protection Device Testing Centre inaugurated. Over 9000 CMA staff are involved in this work.
Climatic Resources

Climate is a clean and renewable resource. Across the five climate zones, China enjoys abundant and diverse climatic resources. Many of them, including wind energy, solar energy, agricultural and ecological climate resources, and cloud water have great potential to be exploited and boast massive economic, environmental and ecological value if they are converted into real productivity. As a result, the analysis of the variation of climatic resources, their assessment, and appropriate exploitation, and the use and protection of climatic resources all play an important role in facilitating sustainable socio-economic development.

400 observing towers have been erected in China for wind energy development.
Integrated observations

An integrated (space-based, upper air and ground-based) meteorological observing system has been set up, which is composed of meteorological satellites, L-band upper air sounding systems, weather radars, AWSs and a variety of modern equipment.

Surface observation

By late 2010, the CMA operated 2418 surface meteorological observing stations at a national level. 30347 small and meso-scale weather stations have been set up mostly with local investment. There are 33111 AWSs, covering more than 85% of townships. Basic surface meteorological elements are automatically measured at 1-minute intervals.
Agrometeorological observation

The CMA operates 653 agrometeorological observing stations and 1210 automatic soil moisture observing stations to observe major crops and meteorological conditions for agricultural production. Additional AWSs have been installed in response to requirements for the local development of the rural economy.

Atmospheric background and composition observation

China has set up a GAW station at Waliguan, Qinghai and regional atmospheric background observing stations in Shangdianzi, Beijing, Longfenfsahn, Heilongjiang, and Lin’an, Zhejiang. Three other regional atmospheric background stations are being built in Shangri-La (Yunnan), Akdala (Xinjiang AR) and Jinsha (Hubei). In addition, 28 atmospheric composition observing stations, 29 dust storm and 342 acid rain observing stations are already in operation.
Thunderstorm & Lightning observation

425 lightning detection stations are set up nationwide covering most rural and urban communities.

Upper-air meteorological observation

The CMA operates 120 upper-air observing stations. By the end of 2010, all L-band secondary wind radars-electronic radiosondes were put into operational use to replace past mechanical ones, with higher level automation, precision and intensified observations. An experimental network consisting of 24 fixed wind-profiling radars have been deployed for continuous all-weather upper-wind observations. 433 GPS/MET stations have been set up. The China-made GPS sounding system has been put into experimental use.
A weather radar

By late 2010, 164 new generation Doppler weather radars had been deployed. The new generation weather radar network transmits data on a real time basis at 6-minute intervals, producing radar image mosaics, so as to play an important role in quantitative precipitation estimation, nowcasting, and severe weather monitoring and warning.
FY Series Meteorological Satellites

China is among the few countries in the world which are simultaneously operating both geostationary and polar-orbiting meteorological satellites. So far, China has successfully launched 6 polar-orbiting and 5 geostationary meteorological satellites. The following 6 satellites are currently functioning in orbit: FY-1D, FY-3A, FY-3B, FY-2C, FY-2D and FY-2E. The technologies used in FY-1 polar-orbiters have been upgraded, and they are operating in a network covering both morning and afternoon orbits. The geostationary satellites are functioning in a dual-satellite mode, providing mutual backups in orbit. All FY meteorological satellites have been put into operation; they are developing in series, and they have been incorporated into the global constellations of operational meteorological satellites within the WMO framework.

FY series meteorological satellites are playing an important role in weather forecasts, climate predictions, and eco-environment and natural disaster monitoring, etc., and they have been widely used in marine activities, agriculture, forestry, water resource, civil aviation, ocean navigation, and environment protection, as a model for satellite applications for civil purposes.

The ground application system for FY satellites consists of the Beijing Data Processing Centre, 5 ground receiving stations (i.e. at Beijing, Guangzhou, Urumqi, Jiamusi in China, and Kiruna in Sweden), and many User Service Stations across the country. It receives and processes remote-sensing data from more than 10 domestic and foreign satellites on a routine basis, generating nearly a hundred satellite products that are tailored to the needs of different users each day. These products are disseminated to users within the Asia-Pacific region via dedicated links, the Internet, the CMA-Cast data broadcasting system for government decision-making, disaster prevention, preparedness and mitigation, as well as services in response to global climate change.
The CMA is tasked with real-time collection of global and national meteorological data, international data exchange in real time, and dissemination of various meteorological data, weather forecasting, climate prediction products and real-time meteorological data access services.

Global Telecommunication System (GTS)

The CMA's international telecommunication system has 2 MTN links and 8 regional and interregional links connected with some other RTHs and neighboring GTS centers. The exchanged data includes global surface observations, upper-air observations, aviation meteorological data, marine observations, climate data, typhoon, tsunami, earthquake warnings etc., as well as various meteorological satellite data, NWP and graphic products. The daily data traffic is about 15 GB.
Domestic Meteorological Telecommunication System

The domestic meteorological telecommunication system is composed of land-based wide area networks that extend to the meteorological services at 4 levels (national, provincial, prefectural and county-levels), a satellite-based broadcasting system, and a telecommunication system. It exchanges various meteorological and relevant data and products both on a real-time and non real-time basis between meteorological establishments at all levels, and it also delivers other telecommunication services. The bandwidth of the wide-area networks is 400 Mbps at a national level. Those for regional and provincial links are up to 16 Mbps and 12 Mbps respectively, and those for prefectural and county-level links reach 4 Mbps and 2 Mbps respectively. The VSAT broadcasting system is operating at 8.4 Mbps.
High Performance Computers

High performance computers are essential tools for running numerical models for weather, climate and the Earth environment applications, as well as for model research and development. The Beijing High Performance Computation and Application Centre currently operates a number of high performance computers, including an SW-4000A, SW New Century Series and an IBM Cluster1600, with a total capacity approaching 50 TPLOS. Apart from meeting the needs for meteorological applications, the centre continues to expand its services and technical support to other social sectors, and shares its computational resources with more than 80 external users, including those in petroleum sector, universities and research institutions.

Milestones of High Performance Computers (HPC) at the National Meteorological Information Centre (NMIC)
National Meteorological Data Retrieval System (NMDRS)

NMDRS is a data management and sharing system, which is centrally based on massive multiple hierarchy storage devices, high-performance servers and optical-fiber storage area network (SAN). The storage system is applied to database management, data processing, application-oriented retrieval, storage management, system control and data sharing and other application subsystems, etc.

It serves not only as a massive storage system for multiple users, comprehensive applications and data sharing, but also as a core operational platform for meteorological information storage management and service access at the national level. This storage system provides the real-time operations including collection, processing, storage, service sharing and archival of global and national meteorological data as well as other data related to Earth environment, through which the services are rendered to meteorological establishments within the CMA framework and also made available to other users throughout society.
The CMA strongly pursues scientific and technological innovations in meteorology. In this regard, the Chinese Academy of Meteorological Sciences (CAMS) and its eight specialized research institutes continuously undergo in-depth reforms at the national level. S&T innovations and their transfers into operations have been further enhanced at operational centres and research bodies both at national and provincial levels. The four scientific research programmes on weather, climate, application meteorology and integrated meteorological observations are being fully implemented. The national investments in specialized scientific research projects for public good (meteorology) are increased significantly, with research infrastructure being substantively improved. 9 research findings, including the meteorological support to the Olympic Games, and weather modification techniques, won national awards. 12 key meteorological laboratories (e.g. on severe weather, atmospheric chemistry, fog physics and meteorological observation technologies) and other 39 open laboratories have been improved nationwide. By the end of 2010, CAMS and its 8 institutes had jointly established 31 field sites (stations) for scientific research.

It is the largest scientific research institution, covering many disciplines in the field of atmospheric science, in China. It is a comprehensive meteorological research institution, focusing on atmospheric sounding, weather modification, severe weather, climate system, ecological environment and agrometeorology, numerical modeling, and the atmospheric composition, etc.
Beijing Institute of Urban Meteorology

The Beijing Urban Meteorology Institute is the first scientific research body addressing urban meteorological research. It focuses on such key disciplines as urban sustainable development, disaster prevention and mitigation, and particularly on urban meteorology.

A conventional analysis laboratory at the Shenyang Institute of Atmospheric Environment

The Shenyang Institute of Atmospheric Environment (SIAE) focuses on monitoring and prediction of atmospheric environmental quality. It has gradually developed into a basic application-oriented research body on eco-environment meteorology and atmospheric environmental quality. It is also a training facility.

Urumqi Institute of Desert Meteorology

Urumqi Institute of Desert Meteorology (UIDM) has professional advantages and regional features in desert atmosphere, land-air interaction, hydrothermal circulation, agricultural and livestock meteorology, tree ring-based climate research, the application of satellite remote sensing technologies, and weather forecast research.
Shanghai Typhoon Institute (STI)

The Shanghai Typhoon Institute (STI) mainly conducts basic research and applied research on tropical cyclones. STI is striving to become a domestically first-class and internationally-recognized scientific institution specializing in tropical cyclone research. It serves as a base for training high-level professionals in tropical cyclone science.

Guangzhou Institute of Tropical and Marine Meteorology

The Guangzhou Institute of Tropical and Marine Meteorology (GITMM) focuses on researches in the following 3 fields: tropical atmospheric circulation & synoptic systems, the impact of air-sea interaction on weather and climate across China, and forecasting techniques in tropical meteorology.

Wuhan Institute of Heavy Rain

The Wuhan Institute of Heavy Rain (WIHR) conducts basic and applied research on heavy rain in China, and technological development.

Lanzhou Institute of Arid Meteorology

The Lanzhou Institute of Arid Meteorology (LIAM) involves basic and applied research on arid meteorology and ecological environments across China, as well as technological development, so as to meet the requirements for proceeding towards national socio-economic development, the Grand West Development Programme and Meteorological Modernization.

Chengdu Institute of Plateau Meteorology

The Chengdu Institute of Plateau Meteorology (CIPM) mainly conducts research on the impact on the Qinghai-Tibetan Plateau and its complex terrain, from weather and climate, particularly focusing on regional severe weather, climate and ecological environment changes and related scientific & technological issues.
Staff Status

Since 2001, the strategy of enhancing the CMA with human resources has been fully implemented, for which the CMA’s ‘Comments on Human Resources’, together with other relevant documents, were issued. In 2004, a national conference on human resources was held, during which the CMA’s ‘Comments on Further Enhancing Human Resources’ was distributed. Since 2009, the CMA has disseminated the ‘CMA Comments on Enhancing Human Resource System’ and other 9 related documents. Now, The human resource buildup has now reached a satisfactory development phase, with overall staff qualifications, knowledge, and professional classifications having been further improved.

By the end of 2010, the total number of meteorological staff at the CMA was 53599 nationwide, including 8 academicians, 532 experts at the level of research fellow, 13 scientists who were elected from the national talent projects - Talent Project in the New Millennium and 1 scientist who was elected in the Thousand Talent Programme, 28 experts for government advisory, 46 chief weather forecasters, 755 PhD and 3720 Master degree holders, and 28817 with under-graduate, with 80.3% having graduated from colleges and beyond.
Education and Training

In 2010, the CMA Comments on Accelerating Meteorological Training System was issued to further improve the training institutions at both national and provincial levels, and to let them play a major role in training to improve quality and on-post capability of meteorological staff. A national meteorological training system is being gradually set up, composing the current training centres, universities, research institutions and other relevant education and training facilities, featuring a plausible layout, clear-cut functions, mutual complement, individual characteristics, and being open and responsive to training requirements.

In recent years, focusing on the needs in meteorological development, a meteorological education and training framework has been set up with Chinese characteristics. The China Meteorological Administration Training Centre (CMATC, a WMO Regional Training Center – Beijing Branch, and a WMO/CGMS Virtual Laboratory/Centre of Excellence) has newly set up a core operational framework that incorporates "two bases" (for leadership and forecasters training) " and "three platforms" (for training on climate system monitoring and forecast & prediction; distance learning and resource sharing; and scientific and technological information sharing), thus shaping a new modality for modern meteorological operation, leadership, distance and international training. It also provides solid knowledge and qualified staff in support of the meteorological development in China. Especially since 2009, the CMA has vigorously conducted 3 mobile courses for departmental directors, forecasters and directors of county level services, to further enhance CMATC core capacity-building in faculty and teaching materials, and to promote all-round basic meteorological buildup projects.
Chinese meteorological work is managed by law. The Meteorology Law of the People’s Republic of China came into effect on 1 January 2000, which is to regulate the meteorological activities on a legal basis, and it holds meteorological departments responsible for discharging administrative management functions.

The Chinese meteorological work has embarked on a legal track of development. China promulgated relevant laws and regulations such as Meteorology Law of the People’s Republic of China, the Regulations on Management of Weather Modification and the Regulations on Prevention of and Preparedness for Meteorological Disasters. The CMA issued a series of regulatory documents and 16 departmental rules and regulations including the Meteorological Administrative Punishment Method, the Meteorological Administrative Reconsideration Method, the Administrative Regulations on Thunderstorm Prevention and Mitigation, the Administrative Regulations on Meteorological Data Sharing, the Administrative Regulations on Balloon Release, the Administrative Regulations on Meteorological Forecast Issuance and Media Coverage, the Methods on Protection of Meteorological Observation Environment and Facilities, the Administrative Regulations on Thunderstorm Prevention and Mitigation (revised), the Administrative Regulations on Balloon Release (revised), the Administrative Regulations on Professional Qualifications for Thunderstorm Prevention Projects, the Regulations on Review of Thunderstorm Protection Device Design and Completion Acceptance, and the Regulations on Meteorological Sector Management. The local governments have launched 70 local meteorological rules and regulations.
The CMA actively pushes forward the standardization of meteorology, which allows meteorological standards to play a supportive role in meteorological disaster prevention and mitigation, response to climate change and modernization of meteorological operation. The CMA also promotes standardized and regulated operational services such as public meteorological services, forecasts and predictions, integrated meteorological observations, meteorological information sharing and technical support. In recent years, the CMA issued the National Meteorological Standard System and Standardization Development Plan 2009-2011 and the Comments on Enhancing Meteorological Standardization, and formulated Measures for Meteorological Standardization Management and the Procedures for Meteorological Standardization and other rules, having set up a meteorological standard system, which covers all areas of meteorological operations, to further improve technical bodies working on meteorological standardization.

By the end of 2010, the CMA had issued for implementation 20 national standards and 121 meteorological sector standards; it has established 4 standard committees such as National standard committees on Prevention of and Preparedness for Meteorological Disasters, and the Nationwide Sector Standard Committee on Thunderstorm & Lightning Disaster Prevention. Such standards like the Classification of Meteorological Drought and the Grades of Sand and Dust Storm Weather among others have played an important role in combat againsting natural disasters, for which they won the China Standard Innovation Award.

The local meteorological authorities discharge their management responsibilities for meteorological disasters prevention and preparedness, meteorological observation environment protection, meteorological information release and dissemination, balloon release, lightning protection and other related social activities. Through training and examination, more than 11,000 people nationwide received the meteorological administrative enforcement or oversight certificates. The meteorological administrative enforcement teams have been further enhanced in combination of full-time and part-time workers. Through joint inspection by law and regulations in collaboration with the National People’s Congress, governmental departments and others to intensity enforcement against violations, especially those that have major impacts on the society and draw wider public concerns. Various acts of violations have been effectively contained. In recent years, over 4000 illegal cases were addressed nationwide.
INTERNATIONAL COOPERATION

China is a signatory to the WMO Convention and also a founding member of the organization. Permanent Representative of China with WMO (Administrator of CMA) has been a member of the WMO Executive Council since 1973, playing an important role in the international meteorological community. China fully participates in the activities of the WMO and other relevant organizations, and actively carries out technological cooperation in metrological science and technology with various countries. China introduces advanced technologies and talent from abroad, and sends professional and management staff for training overseas. International cooperation in meteorological science and technology which serves meteorological development has become an integral component of the overall development of Chinese meteorology, having made an important contribution to its rapid development and to its human resource development.

Along with the increasing development of meteorological service in China, the CMA has increased its participation in international meteorological cooperation in terms of depth and scope, with its voice being heard. Like his predecessors, the Administrator of the CMA serves as a member of the WMO Executive council. Mr. ZOU Jingmeng, the former Administrator of the CMA, was elected president of WMO for two consecutive terms from 1987. Prof. YAN Hong, the former Deputy Administrator of the CMA, served as Deputy Secretary-General of WMO in 2004-2010. Since 2002, Academician QIN Dahe, the former Administrator of the CMA, has been the Co-Chair of Working Group I of the Intergovernmental Panel on Climate Change (IPCC). Dr. ZHENG Guoguang, Administrator of the CMA served as the Co-chair of the Group on Earth Observations (GEO) in 2005-2010, and was recommended and elected as a member of the High-Level Panel of Global Sustainability, which was set up by the UN Secretary General Ban Ki-moon in 2010.

Academician Qin Dahe, former Administrator of the CMA, serves as Co-Chair of the IPCC Working Group I.

Dr. ZHENG Guoguang, Administrator of the CMA, Co-chaired the Group on Earth Observations (GEO) in 2005-2010, and was recommended and elected as a member of the High-Level Panel of Global Sustainability, which was set up by the UN Secretary General Ban Ki-moon in 2010.
A donation ceremony of FENGYUNCAST (CMACAST)

At present, the CMA has established a stable bilateral cooperative mechanism in meteorological science and technology with 23 countries including the United States, Canada, Finland, Australia, Japan, the Russian Federation, the United Kingdom, South Korea, Germany, France, the DPRK, Mongolia and Vietnam. This has been in various forms, such as protocol, Memorandum of Understanding (MOU), framework agreement, cooperative declaration and summary reporting. Both sides hold joint working group meetings biennially to discuss cooperative activities for the next two years. In 2006-2010, the CMA agreed with its counterparts 410 cooperative activities at JWG meetings, covering NWP, early warning systems and their applications, nowcasting and meteorological satellite data application, tropical meteorology, GAW, climate and climate change, agrometeorology, Olympic-oriented weather services, and education and training. Through bilateral cooperative activities in the field of meteorological science and technology, both sides have enhanced the operational and technical exchanges, and the CMA has learned the advanced meteorological science & technologies, and facilitated the development of Chinese meteorological services and its operational modernization. This has provided effective services in support of major social events including the 2008 Beijing Olympic Games and the 60th Anniversary of the People’s Republic of China.

Through WMO Voluntary Cooperation Programme (VCP), the CMA conducts a range of activities, including multi-country study tours, instrument and equipment donation, education and training, as well as contributions to VCP Fund. Since 1976, the CMA has held 40 study tours, receiving more than 350 NMS Directors and senior officials from 120 countries. Since 1978, the CMA has donated meteorological instruments and equipment to more than 70 countries. Since 1994, more than 1400 trainees from over 100 countries have received training at WMO Regional Meteorological Training Center-Nanjing and its Beijing branch. These activities have become a model for North-South Cooperation with NMSs in developing countries.

Additionally, the CMA also contributed to IPCC Fund, GEO Fund, THORPEX Fund, IPY Fund and WIS Fund, as well as to other WMO Programmes and emergency assistance activities.
On 12 April 2010, the 13th Session of the Joint Working Group on Cooperation in Meteorology between the CMA and BoM, at which Mr. SHEN Xiaonong, Deputy Administrator of CMA and Mr. Neville Smith, Deputy Director-General of BoM were present.

On 15 September 2010, the 12th Session of the Joint Working Group on Cooperation in Meteorology between the CMA and MSC was held in Ottawa, Canada.

On 20 September 2010, the 17th Joint Working Group Session on Cooperation in the Field of Atmospheric Science and Technology between NOAA and the CMA was held in Silver Spring, Maryland, USA. Dr. ZHENG Guoguang, Administrator of the CMA, attended the Session with his delegation.
Outreach of Scientific Knowledge

Meteorological establishments nationwide have created more than 60 science outreach and education sites designated by relevant ministries, institutions and the CMA. In order to increase the public awareness of disasters and their prevention & mitigation, local meteorological services have publicised meteorological knowledge and achievements made in the Chinese meteorological service via mass media.

On 17 November 2008, the 3rd National Working Meeting on the Outreach of Meteorological Scientific Knowledge was held in Beijing.

A series of “Hot Topics on Global Change” won the Second Award for National Science & Technology Advance

Journals and Publications

China Meteorological News – a meteorological newspaper issued nationwide 4 times a week
China Meteorological Press – about 400 books published annually
meteorological periodicals – 27 regular periodicals and 895 internal publications
Websites and Video Information

The CMA operates several websites such as the CMA Website, the China Weather Website, and the Chinese National Agriculture Network. Meteorological establishments at all levels have launched their meteorological websites. The CMA has established a dedicated weather TV channel and a number of “China Meteorology” web-pages on www.vnet.cn, www.hi.vnet.cn and www.bbn.com.cn. China Weather TV has a dedicated video website: www.mywtv.com.
CHINESE METEOROLOGICAL SOCIETY

On 10 October 1924, the Chinese Meteorological Society was created in Qingdao, Shandong Province. It was one of the earliest societies of physical sciences in China. From its inception, the society has made great efforts in meteorological academic exchanges, publication of ACTA METEOROLOGICA SINICA, talent development and outreach of meteorological knowledge among others, serving as a catalyst for promoting national meteorological services and advance of modern meteorological sciences.

Since the reform and opening up, under the leadership of China Association for Science and Technology and China Meteorological Administration, the Society has conducted a full range of activities, fully playing its essential roles in advancing meteorological science and technology, promoting build-up and development of modernized meteorological systems and services, as a meteorological scientific and technological society with important influence both at home and abroad.

The 27th Council of the Chinese Meteorological Society was set up in October 2010, with 132 members chaired by Dr. QIN Dahe.

The Society consists of 35 disciplinary committees and 4 working committees.

The Society publishes an academic journal – “ACTA METEOROLOGICA SINICA” and a popular science journal – “Meteorological Knowledge”.

The birth place of the Chinese Meteorological Society

The cover page of ACTA METEOROLOGICA SINICA (Chinese Version)